Parsed Citations

Allen, C. R., & Smith, G. I. (1953). Seismic and gravity investigations on the Malaspina Glacier, Alaska. Eos, Transactions American Geophysical Union, 34(5), 755–760. https://doi.org/10.1029/TR034i005p00755
Arendt, A. A., Echelmeyer, K. A., Harrison, W. D., Lingle, C. S., & Valentine, V. B. (2002). Rapid Wastage of Alaska Glaciers and Their Contribution to Rising Sea Level. Science, 297(5580), 382–386. https://doi.org/10.1126/science.1072497
Bruhn, R. L., Pavlis, T. L., Plafker, G., & Serpa, L. (2004). Deformation during terrane accretion in the Saint Elias orogen, Alaska. GSA Bulletin, 116(7–8), 771–787. https://doi.org/10.1130/B25182.1
Bruhn, R. L., Sauber, J., Cotton, M. M., Pavlis, T. L., Burgess, E., Ruppert, N., & Forster, R. R. (2012). Plate margin deformation and active tectonics along the northern edge of the Yakutat Terrane in the Saint Elias Orogen, Alaska, and Yukon, Canada. Geosphere, 8(6), 1384–1407. https://doi.org/10.1130/GES00807.1
Carlson, A. E., Kilmer, Z., Ziegler, L. B., Stoner, J. S., Wiles, G. C., Starr, K., Walczak, M. H., Colgan, W., Reyes, A. V., Leydet, D. J., & Hatfield, R. G. (2017). Recent retreat of Columbia Glacier, Alaska: Millennial context. Geology, 45(6), 547–550. https://doi.org/10.1130/G38479.1
Chapman, J. B., Pavlis, T. L., Bruhn, R. L., Worthington, L. L., Gulick, S. P. S., & Berger, A. L. (2012). Structural relationships in the eastern syntaxis of the St. Elias orogen, Alaska. Geosphere, 8(1), 105–126. https://doi.org/10.1130/GES00677.1
Conway, H., Smith, B., Vaswani, P., Matsuoka, K., Rignot, E., & Claus, P. (2009). A low-frequency ice-penetrating radar system adapted for use from an airplane: Test results from Bering and Malaspina Glaciers, Alaska, USA. Annals of Glaciology, 50(51), 93–97. https://doi.org/10.3189/172756409789097487
Cotton, M. M., Bruhn, R. L., Sauber, J., Burgess, E., & Forster, R. R. (2014). Ice surface morphology and flow on Malaspina Glacier, Alaska: Implications for regional tectonics in the Saint Elias orogen. Tectonics, 33(4), 581–595. https://doi.org/10.1002/2013TC003381
Davison, B. J., Sole, A. J., Livingstone, S. J., Cowton, T. R., & Nienow, P. W. (2019). The Influence of Hydrology on the Dynamics of Land-Terminating Sectors of the Greenland Ice Sheet. Frontiers in Earth Science, 7. https://www.frontiersin.org/articles/10.3389/feart.2019.00010
Deur, D., Thornton, T., Lahoff, R., & Hebert, J. (2015). Yakutat Tlingit and Wrangell-St. Elias National Park and Preserve: An Ethnographic Overview and Assessment. Anthropology Faculty Publications and Presentations. https://pdxscholar.library.pdx.edu/anth_fac/99
Elliott, J., Freymueller, J. T., & Larsen, C. F. (2013). Active tectonics of the St. Elias orogen, Alaska, observed with GPS measurements. Journal of Geophysical Research: Solid Earth, 118(10), 5625–5642. https://doi.org/10.1002/jgrb.50341
Elmore, C. R., Gulick, S. P. S., Willems, B., & Powell, R. (2013). Seismic stratigraphic evidence for glacial expanse during glacial maxima in the Yakutat Bay Region, Gulf of Alaska. Geochemistry, Geophysics, Geosystems, 14(4), 1294–1311. https://doi.org/10.1002/ggge.20097
Evans, S. (1965). Dielectric Properties of Ice and Snow–a Review. Journal of Glaciology, 5(42), 773–792. https://doi.org/10.3189/S0022143000018840
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H., Maussion, F., & Pandit, A. (2019). A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nature Geoscience, 12(3), Article 3. https://doi.org/10.1038/s41561-019-0300-3
Frey, H., Machguth, H., Huss, M., Huggel, C., Bajracharya, S., Bolch, T., Kulkarni, A., Linsbauer, A., Salzmann, N., & Stoffel, M. (2014). Estimating the volume of glaciers in the Himalayan–Karakoram region using different methods. The Cryosphere, 8(6), 2313–2333. https://doi.org/10.5194/tc-8-2313-2014
Gardner, A., Fahnestock, M., & Scambos, T. (2022). MEaSUREs ITS_LIVE Landsat Image-Pair Glacier and Ice Sheet Surface Velocities, Version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/IMR9D3PEI28U
Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr, J., Berthier, E., Hock, R., Pfeffer, W. T., Kaser, G., Ligtenberg, S. R. M., Bolch, T., Sharp, M. J., Hagen, J. O., Broeke, M. R. van den, & Paul, F. (2013). A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science, 340(6134), 852–857. https://doi.org/10.1126/science.1234532
Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., van den Broeke, M., & Nilsson, J. (2018). Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. The Cryosphere, 12(2), 521–547. https://doi.org/10.5194/tc-12-521-2018
Gulick, S. P. S., Reece, R. S., Christeson, G. L., van Avendonk, H., Worthington, L. L., & Pavlis, T. L. (2013). Seismic images of the Transition fault and the unstable Yakutat–Pacific–North American triple junction. Geology, 41(5), 571–574. https://doi.org/10.1130/G33900.1
Hallet, B., Hunter, L., & Bogen, J. (1996). Rates of erosion and sediment evacuation by glaciers: A review of field data and their implications. Global and Planetary Change, 12(1), 213–235. https://doi.org/10.1016/0921-8181(95)00021-6
Holt, J. W., Peters, M. E., Kempf, S. D., Morse, D. L., & Blankenship, D. D. (2006). Echo source discrimination in single-pass airborne radar sounding data from the Dry Valleys, Antarctica: Implications for orbital sounding of Mars. Journal of Geophysical Research: Planets, 111(E6). https://doi.org/10.1029/2005JE002525
Holt, J. W., Truffer, M., Larsen, C. F., Christoffersen, M. S., & Tober, B. S. (2021). IceBridge ARES L1B Geolocated Radar Echo Strength Profiles, version 1 [Dataset]. NASA National Snow and Ice Data Center DAAC. https://doi.org/10.5067/X2H7MP5DBTYP
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., Farinotti, D., Huss, M., Dussaillant, I., Brun, F., & Kääb, A. (2021). Accelerated global glacier mass loss in the early twenty-first century. Nature, 592(7856), Article 7856. https://doi.org/10.1038/s41586-021-03436-z
Huss, M., & Farinotti, D. (2012). Distributed ice thickness and volume of all glaciers around the globe. Journal of Geophysical Research: Earth Surface, 117(F4). https://doi.org/10.1029/2012JF002523
Jacob, T., Wahr, J., Pfeffer, W. T., & Swenson, S. (2012). Recent contributions of glaciers and ice caps to sea level rise. Nature, 482(7386), 514–518. https://doi.org/10.1038/nature10847
Kienholz, C., Rich, J. L., Arendt, A. A., & Hock, R. (2014). A new method for deriving glacier centerlines applied to glaciers in Alaska and northwest Canada. The Cryosphere, 8(2), 503–519. https://doi.org/10.5194/tc-8-503-2014
Krimmel, R. M., & Meier, M. F. (1975). Glacier Applications of Erts Images. Journal of Glaciology, 15(73), 391–402. https://doi.org/10.3189/S002214300003450X
Lapazaran, J. J., Otero, J., Martín-Español, A., & Navarro, F. J. (2016). On the errors involved in ice-thickness estimates I: Ground-penetrating radar measurement errors. Journal of Glaciology, 62(236), 1008–1020. https://doi.org/10.1017/jog.2016.93
Larsen, C. (2020). IceBridge UAF Lidar Scanner L1B Geolocated Surface Elevation Triplets, Version 1 [Dataset]. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/AATE4JJ91EHC
Larsen, C. F., Burgess, E., Arendt, A. A., O'Neel, S., Johnson, A. J., & Kienholz, C. (2015). Surface melt dominates Alaska glacier mass balance. Geophysical Research Letters, 42(14), 5902–5908. https://doi.org/10.1002/2015GL064349
MacGregor, J. A., Boisvert, L. N., Medley, B., Petty, A. A., Harbeck, J. P., Bell, R. E., Blair, J. B., Blanchard-Wrigglesworth, E., Buckley, E. M., Christoffersen, M. S., Cochran, J. R., Csathó, B. M., Marco, E. L. D., Dominguez, R. T., Fahnestock, M. A., Farrell, S. L., Gogineni, S. P., Greenbaum, J. S., Hansen, C. M., ... Yungel, J. K. (2021). The Scientific Legacy of NASA's Operation IceBridge. Reviews of Geophysics, 59(2), e2020RG000712. https://doi.org/10.1029/2020RG000712
MacKie, E. J., Schroeder, D. M., Zuo, C., Yin, Z., & Caers, J. (2021). Stochastic modeling of subglacial topography exposes uncertainty in water routing at Jakobshavn Glacier. Journal of Glaciology, 67(261), 75–83. https://doi.org/10.1017/jog.2020.84
Maussion, F., Butenko, A., Champollion, N., Dusch, M., Eis, J., Fourteau, K., Gregor, P., Jarosch, A. H., Landmann, J., Oesterle, F., Recinos, B., Rothenpieler, T., Vlug, A., Wild, C. T., & Marzeion, B. (2019). The Open Global Glacier Model (OGGM) v1.1. Geoscientific Model Development, 12(3), 909–931. https://doi.org/10.5194/gmd-12-909-2019
Millan, R., Mouginot, J., Rabatel, A., & Morlighem, M. (2022). Ice velocity and thickness of the world's glaciers. Nature Geoscience, 15(2), Article 2. https://doi.org/10.1038/s41561-021-00885-z
Molnia, B. (2001). U.S. Geological Survey Professional Paper 1386-K. https://pubs.usgs.gov/pp/p1386k/
Molnia, B. F., & Jones, J. E. (1989). View through ice. Eos, Transactions American Geophysical Union, 70(28), 701–710. https://doi.org/10.1029/89EO00221
Motyka, R. J., Truffer, M., Kuriger, E. M., & Bucki, A. K. (2006). Rapid erosion of soft sediments by tidewater glacier advance: Taku Glacier, Alaska, USA. Geophysical Research Letters, 33(24). https://doi.org/10.1029/2006GL028467
Moussessian, A., Jordan, R. L., Rodriguez, E., Safaeinili, A., Akins, T. L., Edelstein, W. N., Kim, Y., & Gogineni, S. P. (2000). A new coherent radar for ice sounding in Greenland. IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120), 2, 484–486 vol.2. https://doi.org/10.1109/IGARSS.2000.861604
Muskett, R. R., Lingle, C. S., Sauber, J. M., Post, A. S., Tangborn, W. V., & Rabus, B. T. (2008). Surging, accelerating surface lowering and volume reduction of the Malaspina Glacier system, Alaska, USA, and Yukon, Canada, from 1972 to 2006. Journal of Glaciology, 54(188), 788–800. https://doi.org/10.3189/002214308787779915
Pavlis, T. L., Chapman, J. B., Bruhn, R. L., Ridgway, K., Worthington, L. L., Gulick, S. P. S., & Spotila, J. (2012). Structure of the actively deforming fold-thrust belt of the St. Elias orogen with implications for glacial exhumation and three-dimensional tectonic processes. 29.
Pfeffer, W. T. (2007). A simple mechanism for irreversible tidewater glacier retreat. Journal of Geophysical Research: Earth Surface, 112(F3). https://doi.org/10.1029/2006JF000590
Plafker, G. (1987). Regional Geology and Petroleum Potential of the Northern Gulf of Alaska Continental Margin. http://archives.datapages.com/data/circ_pac/0007/0229_f.htm
Post, A. (1969). Distribution of Surging Glaciers in Western North America. Journal of Glaciology, 8(53), 229–240. https://doi.org/10.3189/S0022143000031221
Post, A., O'Neel, S., Motyka, R. J., & Streveler, G. (2011). A complex relationship between calving glaciers and climate. Eos, Transactions American Geophysical Union, 92(37), 305–306. https://doi.org/10.1029/2011EO370001
Rasmussen, C. E., & Williams, C. K. (2006). Gaussian processes for machine learning. Number ISBN 0-262-18253-X. The MIT Press. www.GaussianProcess.org/gpml
Raup, B., Racoviteanu, A., Khalsa, S. J. S., Helm, C., Armstrong, R., & Arnaud, Y. (2007). The GLIMS geospatial glacier database: A new tool for studying glacier change. Global and Planetary Change, 56(1), 101–110. https://doi.org/10.1016/j.gloplacha.2006.07.018
Rignot, E., Mouginot, J., Larsen, C. F., Gim, Y., & Kirchner, D. (2013). Low-frequency radar sounding of temperate ice masses in Southern Alaska. Geophysical Research Letters, 40(20), 5399–5405. https://doi.org/10.1002/2013GL057452
Russell, I. C. (1893). Malaspina Glacier. The Journal of Geology, 1(3), 219–245.
Sharp, R. P. (1951). ACCUMULATION AND ABLATION ON THE SEWARD-MALASPINA GLACIER SYSTEM, CANADA-ALASKA. GSA Bulletin, 62(7), 725–744. https://doi.org/10.1130/0016-7606(1951)62[725:AAAOTS]2.0.CO;2
Sharp, R. P. (1958). MALASPINA GLACIER, ALASKA. GSA Bulletin, 69(6), 617–646. https://doi.org/10.1130/0016-7606(1958)69[617:MGA]2.0.CO;2
Shi, L., Allen, C. T., Ledford, J. R., Rodriguez-Morales, F., Blake, W. A., Panzer, B. G., Prokopiack, S. C., Leuschen, C. J., & Gogineni, S. (2010). Multichannel Coherent Radar Depth Sounder for NASA Operation Ice Bridge. 2010 IEEE International Geoscience and Remote Sensing Symposium, 1729–1732. https://doi.org/10.1109/IGARSS.2010.5649518
Shreve, R. L. (1972). Movement of Water in Glaciers *. Journal of Glaciology, 11(62), 205–214. https://doi.org/10.3189/S002214300002219X
Swiler, L., Gulian, M., Frankel, A., Safta, C., & Jakeman, J. (2020). A Survey of Constrained Gaussian Process Regression: Approaches and Implementation Challenges. Journal of Machine Learning for Modeling and Computing, 1(2), 119–156. https://doi.org/10.1615/JMachLearnModelComput.2020035155
Tarboton, D. G. (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33(2), 309–319. https://doi.org/10.1029/96WR03137
Thompson, A., Loso, M., Jones, T., Truffer, M., Holt, J., Devaux-Chupin, V., Tober, B., Christoffersen, M., Kuehn, T., Wagner, N., Fahnestock, M., & Larsen, C. (2021). Saltwater Intrusion in Proglacial Lakes at Malaspina Glacier, Southeast Alaska: Introducing the Worlds Newest Tidewater Glacier. 2021, C13B-07.
Tober, B. S., & Christoffersen, M. S. (2022). Radar Analysis Graphical Utility (RAGU) [Software]. Zenodo. https://doi.org/10.5281/zenodo.6366661
Truffer, M., Holt, J. W., Larsen, C. F., & Fahnestock, M. A. (2016). High resolution bed topography for the Malaspina Glacier lobe. AGU Fall Meeting Abstracts, 13. http://adsabs.harvard.edu/abs/2016AGUFM.C13C0836T
Truffer, Martin, Holt, John, Larsen, Christopher, Christoffersen, Michael, & B. S. Tober. (2021). IceBridge UAF L1B HF Geolocated Radar Echo Strength Profiles, version 1 [Dataset]. NASA National Snow and Ice Data Center DAAC. https://doi.org/10.5067/Q0AVPHN3250H
Walton, M. A., Gulick, S. P. S., & Haeussler, P. J. (2022). Revisiting the 1899 earthquake series using integrative geophysical analysis in Yakutat Bay, Alaska. Geosphere, 18(3). https://doi.org/10.1130/GES02423.1
Watts, R. D., & England, A. W. (1976). Radio-echo Sounding of Temperate Glaciers: Ice Properties and Sounder Design Criteria. Journal of Glaciology, 17(75), 39–48. https://doi.org/10.3189/S0022143000030707
Worthington, L. L., Avendonk, H. J. A. V., Gulick, S. P. S., Christeson, G. L., & Pavlis, T. L. (2012). Crustal structure of the Yakutat terrane and the evolution of subduction and collision in southern Alaska. Journal of Geophysical Research: Solid Earth, 117(B1). https://doi.org/10.1029/2011JB008493
Worthington, L. L., Gulick, S. P. S., & Pavlis, T. L. (2010). Coupled stratigraphic and structural evolution of a glaciated orogenic wedge, offshore St. Elias orogen, Alaska. Tectonics, 29(6). https://doi.org/10.1029/2010TC002723
Zechmann, J. M., Truffer, M., Motyka, R. J., Amundson, J. M., & Larsen, C. F. (2021). Sediment redistribution beneath the terminus of an advancing glacier, Taku Glacier (T'aakú Kwáan Sít'i), Alaska. Journal of Glaciology, 67(262), 204–218. https://doi.org/10.1017/jog.2020.101
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun, M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I., Thomson, L., Paul, F., Maussion, F., Kutuzov, S., & Cogley, J. G. (2019). Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568(7752), Article 7752. https://doi.org/10.1038/s41586-019-1071-0
Zurbuchen, J. M., Gulick, S. P. S., Walton, M. A. L., & Goff, J. A. (2015). Imaging evidence for Hubbard Glacier advances and retreats since the last glacial maximum in Yakutat and Disenchantment Bays, Alaska. Geochemistry, Geophysics, Geosystems, 16(6), 1962–1974. https://doi.org/10.1002/2015GC005815