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Abstract 

The Yenisei River is the largest contributor of freshwater and energy fluxes among all rivers draining to the Arctic Ocean. 

Modeling long-term variability of Eurasian runoff to the Arctic Ocean is complicated by the considerable variability of river 

discharge in time and space, and the monitoring constraints imposed by a sparse gauged-flow network and paucity of satellite 

data. We quantify tree growth response to river discharge at the upper reaches of the Yenisei River in Tuva, South Siberia. 

Two regression models built from eight tree-ring width chronologies of Larix sibirica are applied to reconstruct winter (Nov–

Apr) discharge for the period 1784-1997 (214 years), and annual (Oct–Sept) discharge for the period 1701–2000 (300 years). 

The Nov–Apr model explains 52% of the discharge variance whereas Oct–Sept explains 26% for the calibration intervals 

1927–1997 and 1927-2000, respectively.  This new hydrological archive doubles the length of the instrumental discharge 

record at the Kyzyl gauge and resets the temporal background of discharge variability back to 1784. The reconstruction finds 

a remarkable 80% upsurge in winter flow over the last 25 years, which is unprecedented in the last 214 years.  In contrast, 

annual discharge fluctuated normally for this system, with only a 7% increase over the last 25 years. Water balance modeling 

with CRU data manifests a significant discrepancy between decadal variability of the gauged flow and climate data after 

1960. We discuss the impact on the baseflow rate change of both the accelerating permafrost warming in the discontinuous 

zone of South Siberia and widespread forest fires. The winter discharge accounts for only one third of the annual flow, yet the 

persistent 25-year upsurge is alarming. This trend is likely caused by Arctic Amplification, which can be further magnified by 

increased winter flow delivering significantly more fresh water to the Kara Sea during the cold season.   
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Highlights  

• Tree-ring data from the upper reaches of the Yenisei River track seasonal river discharge. 

• The discharge signal derives from larch growth that is limited by summer-fall temperature and precipitation. 

• Winter (Nov-Apr) and annual (Oct-Sept) discharge are reconstructed from the tree rings to 1784 CE.  

• The winter discharge upsurge of 80% over the last 25 years is unprecedented since 1784 CE.  

• Accelerating permafrost warming and forest fires most likely drive the winter flow upsurge.  

• Tree rings are a useful proxy for the seasonality of river discharge in Northern Eurasia.  

 

 

1. Introduction 

The inflow of freshwater and heat to the Arctic Ocean 

from rivers is of central importance to global climate 

variability via impacts on Arctic sea-ice coverage and the 

ocean’s thermohaline circulation (Aagaard and Carmack 

1989, Rahmstorf 2002, Fichot et al 2013). Accelerating 

warming in the Arctic and loss of sea-ice cover unfolding 

over the last 20 years, known as Polar or Arctic 

Amplification (AA), raise many questions about the 

feedbacks of terrestrial systems coupled with the Arctic 

system (Serreze et al 2009, Screen 2014, Prowse et al 2015). 

Emerging evidence suggests that freshwater originating from 

the largest Arctic watersheds stimulates the AA trajectory 

(Yang et al 2014, Prowse et al 2015, Agafonov et al 2016). 

However, hydrology feedbacks from oceans and sea-ice on 

the regional basin-scale are only beginning to be recognized 

due to the short record length and sparse network of 

hydrological observations (Lammers et al 2007, Landerer et 

al 2010, Shiklomanov et al 2021).  

Eurasia contributes 75% of the total terrestrial runoff to 

the Arctic Ocean (Shiklomanov et al 2000). Large-scale 

reanalysis of the hydrological observations and remote 

sensing assessments show an accelerating rate of discharge 

for the large Siberian Rivers in recent decades (Syed et al 

2007, Yang et al 2007, Shiklomanov et al 2021). An increase 

of 7% for the period 1936-1999 was first identified by 

Peterson et al (2002). More recent studies confirm the 

continuing trend of flow increase for all large rivers of the 

Eurasian continent and highlight a new historical maximum 

discharge and soil moisture water equivalent in 2007 

(Shiklomanov and Lammers 2009, Tei et al 2013, Holmes et 

al 2016, Shiklomanov et al 2021). Climate models predict 

that large flow increases will continue across much of 

Eurasia through 2090 (Bring et al 2017). Furthermore, the 

winter flow displays the highest rate of increase, although 

this can be heavily impacted by flow regulation (Lammers 

2001, Yang et al 2004, Magritsky et al 2018, Melnikov et al 

2019). These trends are not limited to the Eurasian Arctic, as 

Déry et al (2016) report an 18% increase of river discharge 

in northern Canada over 1989–2013.  

The observed recent changes in the hydrologic regime of 

the Arctic challenge our understanding of how streamflow 

responds to climate change. Studies show that intensified 

precipitation induced by warming climate is a major 

contributor to the recent rise of annual streamflow, but is not 

the only factor (Shiklomanov and Lammers 2009; 

Shiklomanov et al 2013). Winter streamflow appears to be 

particularly sensitive to increasing temperature (Wang et al 

2021). Remote sensing data, used to evaluate the linkages 

between climate and streamflow on the sub-continental scale, 

reveal large differences in spatial patterns, climate variation, 

and forcing of permafrost thawing between basins of large 

Eurasian rivers, such as the Ob, Yenisei and Lena (Troy et al 

2012; Wang et al 2021). The spatial distribution of 

permafrost in the upper reaches of these Siberian rivers 

varies widely, ranging from isolated (<10% of area underlain 

by permafrost) for the Ob River and discontinuous (50%-

90%) for the Yenisei River to continuous (>90%) for the 

Lena River (Brown et al 2002). Most notably, the ongoing 

thickening of the active layer over discontinuous permafrost 

is contributing most to discharge anomalies (Landerer et al 

2010; Makarieva et al 2019). We assume that the spatial and 

temporal dynamics of permafrost degradation (especially in 

the discontinuous zone) stimulate the permafrost driver of 

discharge response for climate change. Extending the record 

of seasonal discharge helps to gain insights to the longer 

range of such responses, especially in the past when climate 

was much cooler. A longer record would better quantify the 

hydrologic responses across the Arctic watersheds not only 

to climate change but to direct anthropogenic impacts on the 

terrestrial runoff as well.  

The Yenisei River is the largest contributor of freshwater 

and energy fluxes of all Arctic rivers (Lammers et al 2007; 

Shiklomanov and Lammers 2013). The Yenisei River, 

accounting for 1.5% of global runoff, is 3487 km long, drains 

a 2,580,000 km2 area from Mongolia across Siberia, and 

empties into the Kara Sea. Tree rings can yield a long-term 

perspective on Yenisei River hydrology and the long-term 

natural variability of freshwater flux to the Kara Sea. Tree-

ring data have long been useful to hydrological studies in 

arid regions (Schulman 1945). Yet, only recently has this 

potential been tested in cold regions (MacDonald et al 2007, 
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Agafonov et al 2016, Meko et al 2020) where in some 

settings trees respond to air temperature variation specifically 

driven by water levels rather than to precipitation reflecting 

soil moisture stress. In this study we aim 1) to reconstruct 

seasonal discharge of the Yenisei River at the upper reaches 

situated in the discontinuous permafrost, and 2) to examine 

the long-term variability of the streamflow in response to 

climate change particularly during the winter season, when 

discharge trends have been pronounced.  

The climate-streamflow relationship is examined with the 

Water Balance/Water Transport Model (WBM) (WSAG 

2016, Grogan 2016).   WBM has recently implemented a 

groundwater (GW) modeling algorithm (MODFLOW), 

which presently is the state-of-the-art GW modeling 

framework developed by the USGS (Hughes et al 2017). 

This model addition is a comprehensive hydrological system 

that tracks the sources and fates of water as it moves through 

the hydrological system including glacier melt water, snow 

melt, rainwater, and quantifying their relative distributions 

along the river systems and at any location above and below 

the surface (Grogan et al 2016). WBM has been applied to 

address a variety of hydrologic questions including global 

and regional water resource management and water services 

(Vörösmarty et al 2000, 2005), water availability and 

ecosystem stresses (Vörösmarty et al 2010, Shiklomanov et 
al 2016), permafrost impacts on hydrological conditions 

(Rawlins et al 2003, 2013), land use and hydrologic 

vulnerability (Douglas et al 2007), water temperature 

(Stewart et al 2013), and hydro-biochemistry (Wollheim et al 

2008, 2015). 

2. Methods 

2.1 Yenisei River upper reaches 

The Yenisei River upstream is called Ulug-Khem, a 100–

650 m wide flow passing 166 km from the Kyzyl gauge 

down to the Sayan-Shushensky reservoir in Tuva Republic of 

Russian Federation. This area sits in the zone of 

discontinuous permafrost (Zhang et al 2008; Wang et al 

2021). The Yenisei headwaters originate at the glaciated 

boreal ranges of the Sayan Mountains (Tannu-Ola), yet the 

glacial melt contribution to the flow is negligible with 

respect to river discharge (Okishev, 2006). The majority of 

glaciers (82%) in this region are smaller than 0.5 km2 (Lucas 

and Gardner 2016). Snow and summer rainfall are the major 

sources of water at the upper reaches (35% and 42%, 

respectively). In terms of seasonality, the winter flow relies 

mainly on underground water sources, which account for 

23% of the annual flow (Shiklomanov et al 2021). In Eastern 

Siberia, the winter flow contributes only 2-5% of the total 

annual discharge while the spring-summer contribution is up 

to 90% (Shiklomanov et al 2021). This contrasts the Upper 

Yenisei system, where winter flow measures 12% of the 

annual discharge and persists longer, i.e. 140-150 days 

(Lammers et al 2007). The high flow occurs in spring (May–

June) due to snowmelt beginning from mid–April. Spring 

discharge rapidly rises and reaches a maximum by mid–June. 

The snowpack is minimal in the semi desert watersheds of 

the Tuva trough, although the small tributaries draining the 

north-eastern region of the upper basin collect alpine 

snowmelt from the Sayan Mountains that sustains 50% of the 

annual flow. In mid and late summer (July–September) 

discharge gradually declines. However, summer floods 

from rainstorms may create 10-15 highwater events every 

year lasting 5-8 days (Serreze et al 2002). This seasonal 

discharge pattern is common across the Arctic watersheds 

with some adjustments for snowpack and permafrost 

conditions (Yang et al 2007, Zhang et al 2008, Wang et al 

2021). 

2.2 Discharge data 

The Yenisei River at Kyzyl gauge represents a 

predominantly pristine streamflow regime without any 

significant regulation and water withdrawal across the 

watershed. The Kyzyl gauge (code 9002) is located at the 

confluence of two headstreams called Bolshoy Yenisei and 

Maliy Yenisei (or Bi-Khem and Ka-Khem in the Tuvan  

 

 
Figure 1: Map of the Yenisei River basin with locations of tree-ring sites 

(red) and Kyzyl gauge (green) at the upper reaches. Inserts: Topography of 

the upper reaches and tree-ring sites used in the discharge models (top). Bar 

plot of monthly precipitation from the Kyzyl weather station (1915-2019) 

(middle). Monthly mean (brown) and extreme (blue) discharge of the Yenisei 

River at Kyzyl gauge (1927-2019). Vertical dash lines outline the water 

seasons: low, high and summer-fall (bottom).  

 

language). The Bolshoy Yenisei rises in the Tannu-Ola 

Mountain range and the Maliy Yenisei in the Darhat rift 

valley, Mongolia. The Kyzyl gauge is at 51.72N, 94.40E 

and 615 m asl and has a drainage area of 115,000 km2. 

Seasonal dynamics of streamflow are shown in the 
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hydrograph of Figure 1, which highlights the low flow 

during November to April and the high flow from June to 

October, with the maximum discharge occurring usually in 

late June due to snowmelt runoff.  The average annual 

discharge is 1025 m3/s. The spring flow doubles that amount 

(2410 m3/s) and in winter the flow is only about one-third of 

the annual average (285 m3/s).   

The monthly observational discharge data are 

downloaded from the Regional Arctic Hydrographic 

Network (R-ArcticNET v.4.0 https://www.r-

arcticnet.sr.unh.edu, Lammers et al 2016). Most recent data 

are obtained from the State Hydrological Institute, Saint 

Petersburg, Russia, and have been screened for quality 

control via calculation of gridded runoff fields across the 

Arctic region (Lammers et al 2001). The Kyzyl monthly 

observations were updated for the 1927–2019 period, 

covering 92 years. Missing data are filled with linear 

interpolation from nearby gauges of the Yenisei River basin.     

 

Table 1. Statistics of tree-ring width chronologies used in the regression modeling.   

Site ID Coordinates Elevation 

asl 

Full Interval >0.85 

EPS1 

Interval 

Sample  

size 

Ntrees 

 

Yenisei 

discharge 

correlation2 

mong33 

russ258 

russ227 

russ249 

HON 

russ230 

CHG 

SHA 

94.88E, 49.37N 

98.14E, 50.22N 

88.10E, 49.62N 

95.31E, 51.58N 

91.49E, 52.17N 

    87.83E, 50.27N 

95.45E, 51.09N 

95.08E, 51.12N 

2229 m 

2200 m 

2076 m 

2060 m 

1190 m 

1703 m 

1035 m 

1018 m 

1712-1997 

1700-2007 

1700-2000 

1700-2012 

1783-2019 

1700-2000 

1700-2017 

1700-2017 

1712 

<1700 

<1700 

<1700 

1855 

<1700 

<1700 

1836 

22 

18 

24 

14 

22 

10 

16 

17 

-0.44 

-0.35 

-0.25 

0.28* 

0.28* 

0.27* 

-0.39 

0.33* 

1EPS reaches 0.85 at or before (<) the indicated year 
2Correlation of tree-ring series with Oct-Sept or Nov–Apr average discharge at the Kyzyl gauge over 1927–1996 (70 years). Listed 

correlations are for discharge in year t with tree-ring index for chronologies in the reconstruction model. If predictor was lagged, 

correlation for with that lagged tree-ring index; lagged correlation indicated by asterisk.  

 

2.3 Tree-ring data 

The region of interest for determining discharge history 

comprises the headwaters of the Yenisei River and adjacent 

land in the eastern ranges of the Altai Mountains where 

storms track and deliver precipitation to the upper reaches of 

the watershed (Figure 1). Tree-ring data from a box bounded 

by the coordinates 49N–53N and 96E–102E comprises 

two datasets: 1) 28 tree-ring site chronologies downloaded 

from the International Tree-Ring Data Bank (ITRDB, 

https://www.ncdc.noaa.gov/data-access/paleoclimatology-

data/datasets/tree-ring), and 2) 8 tree-ring chronologies from 

the TRISH network in Tuva (https://trish.sr.unh.edu/). The 

total of 36 site tree-ring chronologies were developed from 

crossdated tree-ring width series of the upper and lower tree 

lines through the statistical procedure called standardization. 

Standardization optimizes the common tree-growth signal at 

each site by removing ring-width age-related trends and 

validating intervals with adequate sample size (Fritts 1976, 

Cook and Kairiukstis 1990). Details on tree-ring chronology 

calculation are placed in Supplementary materials (SM1).  

Table 1 lists statistics of  the 8 site chronologies used in the 

reconstruction models (see Section 2.4). Correlation with 

discharge ranges from -0.44 to +0.33. The listed correlations 

apply to the particular lag at which the chronology is 

represented in the reconstruction model.   

2.4 Discharge reconstruction model 

Climatic signals in tree-ring chronologies are estimated 

with the program Seascorr (Meko et al 2011), which 

examines Pearson correlations and partial correlations 

between tree-ring index series and monthly data of mean 

temperature and precipitation aggregated over variable-

length seasons (one, three and six months). The correlation 

analysis uses climate data from weather stations Kyzyl 

(RSMID#3696, 51.72N and 94.5E, 626 m asl) and Abakan 

(RSMID#29862, 53.77N and 91.32E, 254 m asl) for the 

interval 1925-2018, as well as CRU TS v. 4.04 0.5 degree 

gridded data for the interval 1901-2019  

(https://climexp.knmi.nl, Harris et al 2020).  

The statistical model selected for reconstruction was 

stepwise linear regression of discharge on chronologies (e.g., 

Woodhouse et al 2006). The model is problematic with just 

70 observations (1927-1996) for calibration and a total of 

108 potential predictors (36x3=108) if even a simple lagged 

model with series at lags t-1and t+1 are allowed as predictors 

of discharge in year t. Protocol for statistical screening of the 

predictors and model verification is shown in Supplementary 

Materials (SM2). For each season, discharge between 1937-

https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
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1996 was regressed stepwise on the 14 selected tree-ring 

series using p-enter = 0.25 and p-remove = 0.30 and a cross-

validation stopping rule. Stepwise regression yielded the 

reconstruction models for seasonal and annual discharge. The 

first reconstruction model is 

 1 1 5 5y a b x b x= + +  Model 1 

where y is the reconstructed Nov-Apr discharge in year t; 

1 5, ,x x are tree-ring indices of mong33, russ258, and CHG 

in in year t, and of HON and russ230 in year 1t + ; a is the 

estimated regression constant; and 1 5, ,b b  are the estimated 

regression coefficients. The second model is  

 1 1 4 4y a b x b x= + +  Model 2 

where is the reconstructed Oct-Sept discharge in year t;

1 4, ,x x  are tree-ring indices of russ227 and CHG in year t,   

of russ249 in year 1,t − and of SHA in year 1;t + and the 

regression constant and coefficients are defined as in Model 

While the stepwise modeling on the 14 potential predictors 

was restricted to the common period 1927-1996 of those 

chronologies, the predictors in the final models had 

somewhat longer common periods. Accordingly, models 

were re-calibrated using years 1927-1997 for Nov-Apr and 

1927-2000 for Oct-Sep to arrive at models applied for long-

term reconstruction. 

2.5 Water balance modeling 

The Water Balance/Water Transport Model (WBM) 

(WSAG 2016, Grogan 2016) was used to simulate Kyzyl 

discharge for the same seasonal windows as the tree-ring 

modeling. Several WBM modules developed recently are 

particularly important for the Upper Yenisei. The model 

applies sub-grid elevation band distributions derived from a 

high-resolution elevation dataset (ASTERglobal digital 

elevation model v2, 30 m) where each grid cell is subdivided 

into several elevation bands for temperature corrections and 

snowmelt calculations (Lammers et al 1997, Hartman et al 

1999).           

WBM is also designed to use glacier model output from 

DEBAM or PyGEM (Lammers et al 2013). The exchange 

between GW storage and surface water hydrology is based 

on formulations from the USGS RIV module (MODFLOW 

package, Harbaugh et al 2000, Harbaugh 2005), and 

simulated aquifer geometry from de Graaf et al (2015, 2017).                

The WBM was run for the 1901-2018 period in pristine 

mode (no human activity impacts) using monthly gridded 

CRU climate fields (Harris et al 2020). The monthly gridded 

climate fields for the interval 1901-2019, which are primarily 

based on ground observations, have been used to simulate 

various hydrological characteristic including runoff, 

discharge, soil moisture, snow accumulation, ground water 

storage and evapotranspiration.   

3. Results   

3.1 Hydrological signal of tree rings 

Seascorr results for the full set of tree-ring predictors show 

that climatic impact on conifer tree growth is relatively 

coherent in these semi-arid regions despite the diverse 

topography and tree ecology. In general, moisture from 

precipitation stimulates tree growth, while high temperature 

promotes evapotranspiration and creates drought stress and 

smaller rings (Meko et al 1995, Panyushkina et al 2018). 

Yet, the physiological mechanism behind larch tree-ring 

growth response to climate at the site level is not fully 

understood. Moreover, the available climate data are sparse, 

and cannot be expected to match well with the precipitation 

history at the tree sites. Local precipitation is also to some 

 

Table 2. Reconstruction statistics for Yenisei River streamflow at the Kyzyl gauge.   

Calibration interval: 1927-1997 (71 years) in Model #1 and 1927-2000 (74 years) in Model #2.  

 

Predictant  Predictors R R2 adjR2 DW F RE RMSEcv 

 

Model #1 

  Nov-Apr 

mong33t 

russ258t 

CHGt 

HONt-1 

russ230t+1 

0.72 0.52 0.48 1.94 

(p=0.54) 

14.14 

df=(5,65)  

p<1E-8 

0.44 41.2832 

 

Model #2 

Oct-Sept 

russ227t 

CHGt 

russ249t-1 

SHAt+1 

0.51 0.26 0.22 1.85 

(p=0.40) 

6.08  

df=(4,69) 

p<0.001 

0.11 126.3911 

*R- coefficient of correlation; R2-coefficient of determination; adjR2-coefficient of determination adjusted for number of predictors in 

model; RE- cross-validation reduction of error; DW-  Durbin-Watson statistic and its p-value (p>0.05 indicates no lag-1 autocorrelation of 

residuals); F-overall F-statistic for testing significance of regression model, with degrees of freedom and p-value (p<0.05 indicates 

significant model); RMSEcv - root-mean-square error of cross-validation, a measure of reconstruction uncertainty. 



extent influenced by altitude, position, exposure, and aspect 

of mountain ridges. It is therefore encouraging that, despite 

these limitations, we find broadly consistent patterns of 

correlation of chronologies with seasonal climate variables. 

For Larix in this region, a recurring pattern is positive 

correlation of ring widths with summer temperature 

(predominantly June) that regulates the growth rate (e.g. cell 

division and arrangement) at the beginning of growth season 

(Panyushkina et al 2003, Belokopytova et al 2018).  

     Figure S1 shows correlation patterns larch ring growth 

with climate. While there are no studies of larch cambial 

phenology at the Yenisei upper reaches, the timing of larch 

wood formation in Khakassia and larch physiological traits 

in Tuva are most likely similar.  Khakassia is about 350 km 

downstream from Kyzyl, the closest region, where the impact 

of hydroclimate variations on larch physiology has been 

studied (Fonti and Babushkina 2016, Belokopytova et al 

2018, Zhirinova et al 2021).  Larch ring growth at the upper 

tree line normally begins in early June, and two weeks earlier 

at the lower tree line. Larch growth enters a dormant phase in 

September.  Most importantly, the climatic signal is recorded 

in xylem formation throughout the entire growth season, 

May–September (Belokopytova et al 2018). 

     The calculated response is explained by the limiting role 

of both temperature and precipitation on the soil moisture 

and hydrological regime. The relationship between air 

temperature and tree-growth is critical to the reconstruction 

of Yenisei River discharge and complimentary to the 

precipitation-sensitive growth. Climatically comparable 

growth conditions over much of the vegetation period are 

commonly reported at broad range of geographical droughts 

(Alan et al 2019). Depleted reserves of soil water restrict 

trees from profiting from the warm temperature in spring 

/early summer and consequently their radial growth shows a 

reduction (Scharnweber et al 2020).  This compensation 

mechanism highlights the pivotal role of soil water recharge 

and lag effects in the regression modeling (Meko et al 1995, 

2007).  Table 1 indicates significant correlation of discharge 

variations from year to year with the tree-ring chronologies 

used as the predictants. The correlations are negative with 

growth of the current year and positive with the subsequent 

(lagged) year. Larch growth is commonly reduced in high-

flow years and increased in low-flow years (Agafonov et al 

2016). 

3.2 Seasonal discharge reconstruction 

Generating a reconstruction from the selected predictor 

pool was also successful.  Both models demonstrate skill in 

prediction since the reduction of error (RE) statistic is 

positive in both cases (Table 2). There was no indication the 

model residuals violated any assumptions, as indicated by a 

non-significant DW statistic (Table 2), a normal-looking 

histogram, and a featureless scatterplot of residuals on fitted 

values (Figure S2). Moreover, a straight line fit of residuals 

against time indicated no significant trend in residuals. 

Supplementary materials include the equations of the two 

reconstructed models: Nov–Apr low water season and annual 

discharge of Oct–Sept (Equation S1-S2).    

Stepwise regression of the selected tree-ring chronologies 

with Yenisei discharge at the Kyzyl gauge finds two seasonal 

groupings: 1) a 6-month period beginning in November of 

the preceding growth year and ending in the following April 

with the strongest signal (R2=0.52, F=14.14, p<0.00001) 

(Table 2), and 2) a 12-month window beginning in October 

of the preceding growth year with a weaker signal (R2=0.26, 

F=6.08, p<0.001). Although the signal of the second seasonal 

grouping was weaker, it is still comparable with signals 

obtained for the Ob River basin from the Eurasian pan-Arctic 

(Agafonov et al 2019, Meko et al 2020). Both signals are 

sufficiently strong to justify the reconstruction effort. 

The developed Nov-Apr tree-ring reconstruction tracks 

the year-to-year variations of baseflow discharge and water-

year discharge since 1784. The decadal and multidecadal 

variability of the two reconstructed flow series is similar and 

the reconstructions share common features until 1960, after 

which the agreement falls apart. In particular, the rate of flow 

in the winter has accelerated considerably over the last 25 

years. The winter flow had a prolonged 71-year period 

(1920–1990) below the historical mean, then suddenly 

surged up (Figure 2, Nov-Apr). The annual flow rises in 

1960–1970 then gradually declines over the next decade, 

stays elevated during 1995–2015 and finally declines again 

until the present (Figure 2, Oct-Sept).  

Discharge modeled with tree-rings is double the length of 

the instrumental record at the Upper Yenisei and found 1) the 

unprecedented upsurge of baseflow from 1995 and 2) a 

significant disagreement in the rate and trend of fluctuations 

between the winter and annual flow during 1995–2019.   
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Figure 2: Reconstructed Nov-Apr (top) and Oct-Sept (bottom) discharge of 

the Yenisei River (blue line). Red line is the instrumental flow at the Kyzyl 

gauge (1927-2019). The thick line is the 10-yr moving average. Horizontal 

line is the gauged mean. 

3.3 Water balance modelling of discharge 

The streamflow–climate relationships for two seasonal 

windows were evaluated using long-term simulations with 

the water-balance model (WBM at the Upper Yenisei basin 

for the interval 1905–2019, 114 years). WBM results show 

high sensitivity of discharge to precipitation and temperature 

that tracks well the decadal and multidecadal variability of 

the flow while systematically underestimating the annual 

variance (Figure 3, Table S2). This could be caused by 

underestimation of precipitation in our input climate dataset 

especial in the early observations (Figure S3), which may 

poorly represent the high-elevation precipitation pattern. The 

number of meteorological stations is sparse, and precipitation 

varies extensively in space in the Sayan Mountains. 

Moreover, WBM probably does not consider some 

environmental factors and processes that may regularly 

contribute to the discharge variance at annual and seasonal 

scales. For example, due to insufficient climate and land 

cover data over such a long period, we had to use simplified 

evapotranspiration calculations and ignore glacier melt and 

permafrost thaw. This neglects the possible role of permafrost 

degradation in the recent increase of the flow.  

 

Figure 3: Observed and WBM simulated Nov-Apr and Oct-Sept seasonal 

discharge of the Yenisei River at Kyzyl gauge. WBM simulated discharge 

derived from CRU climate drivers. Table S2 shows the model statistics. 

 

Another notable feature of the WBM calculated series is a 

significant increase of the estimate error in the winter 

discharge after 1960 (Figure 3, Oct-Sept). The climate 

drivers decreased their rate of change during 1960–2000 

while the baseflow continued accelerating higher. It appears 

the winter flow decoupled from the decadal trends in climate 

variability during that time. This large discrepancy in the 

WBM simulated and observed discharge suggests that the 

feedbacks of the main forcing factors input to the WBM 

altered over the period 1960–2000. However, the climate–

winter flow relationship strengthened after 2000 and the 

simulated variance closed the gap with the instrumental flow. 

4. Discussion   

Tree-ring reconstruction of seasonal discharge for the 

Upper Yenisei extends the instrumental record of winter 

flows at Kyzyl from 1927 back to 1784. This is the first and 

only reconstructed winter flow in the Siberian region, 

bringing a new perspective to streamflow dynamics. The 

reconstruction permits analysis of both the long-term 

(decadal and multidecadal) and annual variability of 

discharge. The long-term variability of winter flow differs 

significantly from the annual flow. The reconstruction finds a 

remarkable 80% upsurge of the winter discharge over the last 

25 years that is unprecedented in the last 235 years, while the 

annual discharge increases by only 7%. Our reconstructed 

annual flow corresponds very well to an independently 

produced tree-ring reconstruction of Selenga River discharge 

for the interval 1708-1998 (Andreev et al 2016), which also 

derives part of its flows from precipitation in the 

mountainous upper headwaters of Altai-Sayan Mountains as 

well as from arid parts of the Yenisei Basin southeast of 

Lake Baikal in Mongolia (Figure S4).  

Many studies generally attribute the recent change of 

flow rate across the Eurasian pan Arctic to warming air 

temperature, seasonal changes of precipitation, or snowpack 

dynamics (Yang et al 2003, McClelland et al 2004, Wu et al 

2005, Yang et al 2007, Zhang et al 2018). However, more 

recent assessments conclude that the primary driver of the 

flow change is enhancement of regional surface–groundwater 

interactions due to degradation of the permafrost (Evans et al 

2020). The linear regression slope of air temperature fields 

(CRU T.4, 1905-2019) is positive overall at the upper 

reaches of the Yenisei since 1960s (Figure S5). Figure S6 

shows a positive linear regression slope in active layer depth 

data for the interval 2000-2018.  CRU reanalysis addressed 

the studied watersheds, finding no extraordinary changes in 

seasonal pattern of summer temperature after 1960 and 1995 

(Figure S7). Tree-ring reconstructions of summer 

temperature and precipitation across the Altai-Sayan 

Mountains suggest that the rate of precipitation and 

temperature change in the late 20th century is not unusual in 

the context of the last 300 years. The late 20th century was 

relatively cool and wet and the most recent decades warm 

and dry (Myglan et al 2012, Kostyakova et al 2018, Fedotov 

et al 2019, Oyunmunkh et al 2019). Strong correspondence 

of river discharge to seasonal snow cover changes does not 

fully explain the winter flow rate (Yang et al 2007, Troy et al 
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2012). Studies covering various time periods show snow 

cover and snow depth decreased in the studied region 

between 1936-2007 (Ye et al 1998, Bulygina et al 2009). 

VIC-simulated seasonal runoff for the interval 1936–1999 

indicates opposite trends in snowpack variability between the 

north and south Yenisei River basin with significant 

reduction of snowpack in the south (Troy et al 2012). It is 

evident that neither temperature, seasonal precipitation 

changes, nor snowpack dynamics are the primary drivers of 

the documented streamflow change.  

It is worth mentioning the role increased fire frequency 

plays on the degradation of permafrost. Carbon emission 

modeling finds Siberia to be an increasingly significant 

region where frequent boreal fires and intense large area 

burns impact climate and permafrost (Conard et al 2002, 

Soja et al 2004a, Tchebakova et al 2009; Gibson et al 2016, 

Kukavskaya et al 2016, Biskaborn et al 2019). Smoke 

plumes from south Siberian fires (including the Sayan 

Mountains, especially near Lake Baikal) have been 

noticeable on the global scale since the late 1990s (Warneke 

et al 2009). Soja et al (2004b) report on the post-fire impact 

on the seasonal frozen layer and soil temperature dynamics. 

After forest fire, soil temperature can increase by as much as 

2–6 C for up to 15 years after the fire, which, as has been 

observed since the mid-20th century, also increases the depth 

of permafrost thaw (Kershaw et al 1975, Viereck and 

Schandelmeier 1980, Van Cleve and Viereck 1983, Furyaev 

1996, O’Neill et al 2003, Kirdyanov et al 2020). In 

connection with forest fires, ground-based data estimates the 

top of permafrost is subsiding at a rate of 0.52 cm/year in the 

Yenisei River Basin  (Knorre et al 2019). Overall, the 

increased fire frequency in southern Siberia likely impacts 

the aquifer level in the discontinuous permafrost and the 

water-storing capacity of the ground, which enhances ground 

water discharge to the flow.  

Climatologically, the frequent fires over arid south 

Siberia are linked to a local high-pressure system controlled 

by the Arctic Oscillation (Kim et al 2020). Anomalous 

warmth in late winter (0.8-1.2 C in Feb -March) enhances 

evaporation, causing earlier ground surface exposure and 

drier ground in spring that promotes the spread of fire. AA, 

due to the weakening of midlatitude jets, is linked to the 

weather patterns that increase the probability of extreme 

weather in the study region (Screen 2014, Cohen et al 2014). 

Interestingly, increased flows is both a consequence of AA, 

due to the same process described above, and a contributor to 

AA as larger winter flows bring significantly more fresh 

water to the Kara Sea.  

We hypothesize that the recent upsurge in winter flow 

resulted from melting permafrost, which itself is a 

consequence of a warming climate. The lack of long-term 

studies on permafrost degradation at the upper reaches of the 

Yenisei River complicates our understanding of permafrost’s 

impact on the hydrological regime (Walvoord and Kurylyk 

2016). Still, multiple lines of evidence suggest permafrost 

plays a key role in this upsurge of winter flows. Biskaborn et 

al (2019) report accelerating permafrost warming in the 

circumpolar Arctic in the last decade of up to 0.20 ± 0.10C 

in the discontinuous zone. Large-scale satellite gravitational 

measurements (GRACE) of the Eurasian pan-Arctic water 

budget attribute the thickening of the active layer to melting 

ground ice in discontinuous permafrost, directly contributing 

to the changes of river discharge since 2003 (Landerer et 

al 2010). Park et al (2016) showed long-term regional trends 

(1980-2009) of 0.03 m -0.06 m decade -1 in thickness of the 

active layer over the permafrost extent, indicating 

widespread permafrost degradation.  Measurements of stable 

isotope composition of Yenisei water in watersheds with 

degraded permafrost show that winter flow decouples from 

the precipitation isotopic signature in the 21st century 

(Streletskiy et al 2015). Active-layer depth over Siberia 

steadily increased over 1956–1990 (Frauenfeld et al 2004, 

Zhang et al 2005) and continued increasing into the 2000s 

(Luo et al 2016). Finally, the most recent remote sensing 

data report a rate of 4.4 mm per year over 1980-2016 in 

thickening of the active layer across Siberia, which increased 

the storage capacity of discontinuous permafrost and the 

contribution of ground water to river discharge during the 

winter months (Wang et al 2021).  

These changes have implications for the vegetation that 

grows there. The boundary between the active layer and 

permafrost plays an important role as source water storage 

(Sugimoto et al 2003). Late-summer-fall precipitation 

infiltrates into the seasonally frozen layer and mixes with 

ice-thaw water. The impact of increased evaporation of 

surface water on Eastern Siberian streamflow is not 

significant (Sugimoto and Maximov, 2012), meaning that 

ongoing thickening of the active layer due to warming spring 

temperatures implies thermal distress during growth onset.  

A warm spring prompts rapid snowmelt, cooler soil 

temperature and excess moisture, delaying the onset of 

growth (Agafonov et al 2019, Kannenberg et al 2019). 

Furthermore, the positive correlation of tree growth with 

previous summer and fall precipitation suggests that the 

growth rate of the current year is enhanced by soil-water 

recharge during the previous fall, the lack of which can limit 

accumulation of non-structural carbohydrates that provide 

reserves necessary for spring growth (Choat et al 2018). 

5. Conclusion  

Tree-ring proxies of summer temperature and precipitation 

define the linkage between climate and Yenisei streamflow. 

Regression of tree-ring width series with discharge is useful 

for reconstructing seasonal streamflow changes over 

centuries in arctic watersheds. Tree ring widths account for 
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52% to 27% of the explained variance of seasonal and annual 

flow of the Yenisei River. Applying tree rings from high and 

low elevations allows modeling of at least two, and possibly 

more, water seasons from a single watershed. Further efforts 

should be focused toward increasing the sample depth of the 

tree-ring chronologies to extend the interval of reconstructed 

flow dynamics back in time. Reconstruction of the Upper 

Yenisei flow found an unprecedented increase in the winter 

flow rate between 1995 and 2019, which is not seen in the 

record going back to 1784. This rate is nearly 80% above the 

instrumental and reconstructed average. Water balance 

modeling indicates the weakening of climate and streamflow 

linkages soon after 1960. Many studies link AA with the 

intensified degradation of discontinuous permafrost and 

boreal forest fires, possibly driving the change of winter flow 

rate in recent decades. 
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