Input beyond the threshold: Explaining AUX-initial declaratives

BACKGROUND:

Corpus and diary data is from one cognitively typical monolingual 2yo (Paddy) acquiring British English. He takes AuxS to be canonical word order.

Paddy's syntactic development is largely typical:

- ✓ Head directionality_[2]
- ✓ Distinction between AUX and V_[3]
- ✓ Auxiliaries/copula BE often omitted_[4]
- ✓ Inflected auxiliaries with overt Nom.Subj_[5]

Atypical features we observed with Paddy:

- × Default Subj-initial word order_[6]
- × Medial auxiliaries before SAI_[3]
- × Inversion of any AUX > copula BE_[7]

HYPOTHESIS: AuxS 'wins out' as the canonical order for Paddy due to a high proportion of AuxS in his input.

DETAILS:

- Variational Learning predicts acquisition of competing grammars until input frequency helps determine which grammar is correct.
- Tolerance Principle predicts that a noncanonical variant prevails as lexicalized if its proportional input frequency is not higher.
- → For Paddy, AuxS is the rule supported by the input; SAux_{DECL} is treated as an exception.

References:

- [1] = Yang (2016).:The price of linguistic productivity.
- [2] = Hirsh-Pasek & Golinkoff (1996): The intermodal preferential looking paradigm.
- [3] = Stromswold (1990): Learnability and the acquisition of auxiliaries

Robyn Orfitelli, for her contribution to a previous iteration of this work.

- [4] = Brown, R. (1973): A first language: The early stages.
- [5] = Schütze & Wexler (1996.): Subject case licensing and English root infinitives
- 6] = Brown & Bellugi (1964): Three processes in the child's acquisition of syntax. [7] = Cazden (1972): Child Language and Education.
- 8] = Heycock & Wallenberg (2013): How variational acquisition drives syntactic change

Acknowledgment:

When children learn to map speech acts onto clause types, they treat input variation like any other regularization problem:

There is a TOLERANCE level for exceptions to a postulated position for auxiliaries.

$$e \leq \theta_N = \frac{N}{lnN}$$

Let a rule R be defined over a set of N items. R is productive if and only if e, the number of items not supporting R, does not exceed $\theta_{N'[1]}$

Input

	Eve (Brown)	Paddy (Diary)	Naima (Providence)
Age & MLUw	1;11-2;3 & 3.23	2;3-2;7 & 2.9	1;3-2;7 & 2.87
AuxS	1164 (8.0 %)	137 (12.6%)	5416 (8.8%)
SAux	953 (6.7%)	31 (3.36%)	6330 (10.7%)
Overall	14509	922	61695

OUTPUT

- (1) You can have lobster salad [...] 2;2
- (2) Can I have apples too? 1;11

OUTPUT

(3) MOT: Where is your pen? Oh there it is! CHI: Can Paddy get it. 2;3) Can I read that? 2;6

OUTPUT

- (5) I can have lunch before your ice cream.
- (6) Can I have my wallet? 2;9

Eve and Naima: SAux is canonical and used for statements, AuxS marks (polar) questions Paddy: AuxS is canonical and is used for statements (3) and polar questions (4)

VARIATIONAL LEARNING:

- 11 of the 13 auxiliaries in Naima and Eve's input occur in both AuxS and SAux orders.
- N & E cannot and do not associate different word orders with different auxiliaries.
- N & E must instead associate different word orders with different semantics.
- Only 2 out of the 8 auxiliaries in Paddy's input occur in both AuxS and SAux (with >3 cases of SAux).
- Paddy posits a AuxS rule with a few lexicalized exceptions.

	INPUT		OUTPUT	
	AuxS	SAux	AuxS	SAux
aux-BE	15	6	4	1
can	27	20	2	
cop-BE	25		18	
could	1			
DO	28	3	6	
HAVE	12		2	
might		1		
shall	8		2	
will		1		
Total	116	31	34	1

TOLERANCE PRINCIPLE:

- Paddy hears 8 auxiliaries so would permit 4 exceptions (TP: $e \le \theta_8 = 8/\ln(8) = 3.85$). Only will and might are used in SAux only.
- Aux-BE and can could constitute exceptions of a different type; Paddy must determine the import of the difference here.
- Paddy **produces** only 1 lexical exception to a general AuxS rule given an inventory of 6 auxiliaries (TP: e ≤ θ_6 = 6/ln(6) = 3.35).

INDEPENDENT MOTIVATION:

Variation in T-to-C movement reported for Paddy vs. Naima and Eve resembles variation in V-to-T in V2 languages.[8]

