Input beyond the threshold: Explaining AUX-initial declarativesRebecca Woods
 Johannes Heim Joel Wallenberg joel.wallenberg@nc.ac.uk Newcastle University

BACKGROUND:
Corpus and diary data is from one cognitively typical monolingual 2 yo (Paddy) acquiring British English. He takes AuxS to be canonical word order.

Paddy's syntactic development is largely typical:
\checkmark Head directionality $_{[2]}$
\checkmark Distinction between AUX and $\mathrm{V}_{[3]}$
\checkmark Auxiliaries/copula BE often omitted ${ }_{[4]}$
\checkmark Inflected auxiliaries with overt Nom.Subj ${ }_{[5]}$
Atypical features we observed with Paddy:
\times Default Subj-initial word order ${ }_{[6]}$
\times Medial auxiliaries before $\mathrm{SAl}_{[3]}$
x Inversion of any $\mathrm{AUX}>$ copula $\mathrm{BE}_{[7]}$

HYPOTHESIS: AuxS 'wins out' as the canonical

 order for Paddy due to a high proportion of AuxS in his input.
DETAILS:

- Variational Learning predicts acquisition of competing grammars until input frequency helps determine which grammar is correct.
- Tolerance Principle predicts that a noncanonical variant prevails as lexicalized if its proportional input frequency is not higher.
\rightarrow For Paddy, AuxS is the rule supported by the input; SAux ${ }_{\text {DECL }}$ is treated as an exception.

References:

= Yang (2016):The price of finguistic productivit

 = (7) = Cazden (1972): Child L..ñuege and EEcuation.

When children learn to map speech acts

 onto clause types, they treat input variation like any other regularization problem: There is a TOLERANCE level for exceptions to a postulated position for auxiliaries.$$
e \leq \theta_{N}=\frac{N}{\ln N}
$$

Let a rule R be defined over a set of N items. R is productive if and only if e, the number of items not supporting R, does not exceed $\theta_{N[1]}$

Eve and Naima: SAux is canonical and used for statements, AuxS marks (polar) questions Paddy: AuxS is canonical and is used for statements (3) and polar questions (4)

VARIATIONAL LEARNING: orders with different semantics.

- Only 2 out of the 8 auxiliaries in Paddy's input occur in both AuxS and SAux (with >3 cases of SAux). Paddy posits a AuxS rule with a few lexicalized exceptions.

	INPUT		OUTPUT	
	AuxS	SAux	AuxS	SAux
aux-BE	15	6	4	1
can	27	20	2	
cop-BE	25		18	
could	1			
DO	28	3	6	
HAVE	12		2	
might		1		
shall	8		2	
will		1		
Total	116	31	34	1

TOLERANCE PRINCIPLE:

- Paddy hears 8 auxiliaries so would permit 4 exceptions (TP: $\mathrm{e} \leq \theta_{8}=8 / \ln (8)=3.85$). Only will and might are used in SAux only.
Aux-BE and can could constitute exceptions of a different type; Paddy must determine the import of the difference here.
- Paddy produces only 1 lexical exception to a general AuxS rule given an inventory of 6 auxiliaries (TP: $\mathrm{e} \leq \theta_{6}=6 / \ln (6)=3.35$).

INDEPENDENT MOTIVATION:
Variation in T-to-C movement reported for Paddy vs. Naima and Eve resembles variation in V-to-T in V2 languages. [8]

MORE DATA? COMING SOON

My can I pour it.

